
Research in Parallel Algorithms and Software for

Computational Aerosciences

Neal D. Domel 1,2

Report NAS-96-004, April, 1996

domelnd@lfwc.lockheed.com

Abstract

Phase I is complete for the development of a Computational Fluid Dynamics parallel code
with automatic grid generation and adaptation for the Euler analysis of flow over com-

plex geometries. SPLITFLOW, an unstructured Cartesian grid code developed at Lock-
heed Martin Tactical Aircraft Systems, has been modified for a distributed memory/
massively parallel computing environment. The parallel code is operational on an SGI
network, Cray J90 and C90 vector machines, SGI Power Challenge, and Cray T3D and
IBM SP2 massively parallel machines. Parallel Virtual Machine (PVM) is the message
passing protocol for portability to various architectures. A domain decomposition tech-
nique was developed which enforces dynamic load balancing to improve solution speed
and memory requirements. A host/node algorithm distributes the tasks. The solver paral-
lelizes very well, and scales with the number of processors. Partially parallelized and non-
parallelized tasks consume most of the wall clock time in a very fine grain environment.
Timing comparisons on a Cray C90 demonstrate that Parallel SPLITFLOW runs 2.4 times
faster on 8 processors than its non-parallel counterpart autotasked over 8 processors.

1 Lockheed Martin Tactical Aircraft Systems, Fort Worth, Texas

2 Funded by NASA Ames Research Center under contract NAS2-14057

1.0 Introduction

Since their origin, computer architectures have evolved from single-

instruction, single data (SISD) processors. A significant improvement in

speed accompanied the development of single-instruction, multiple-data

(SIMD) processors, often called vector processors. The next step in archi-

tecture development offering further improvement in speed is the multi-

pie-instruction, multiple-data (MIMD) processor, or parallel processor

(Ref. 1).

Parallel vector machines are heavily used in industry for Computational

Fluid Dynamics (CFD). These machines, like the Cray C90, generally have

a few (around 8) tightly coupled processors all sharing the same memory.

This type of platform is often used for code autotasking, which distributes

instructions to the processors. Although this approach improves the execu-

tion speed, the improvement often fails to scale with the number of proces-

sors. Scalability is more likely to be achieved if the program is coded such

that each processor independently executes its instructions on its uniquely

designated piece of memory. This "distributed memory" philosophy

allows the processors to be much more efficiently utilized. However, this

requires more coding effort than the shared memory autotasked approach.

Massively parallel machines generally have many (over 100) processors

with distributed memory (i.e., each processor has its own memory which is

not directly linked to other processors) (Ref. 2). Because of the large num-

ber of processors, these machines have the potential for dramatic improve-

ments in overall execution speed. However, the benefit they offer has gone

largely unappreciated for years because of the high level of effort required

to enable a pre-existing code to run in a distributed memory environment

(Ref. 3). However, the complexity of problems demanding simulation con-

tinues to outpace the speed improvements of conventional hardware.

Thus, the necessity of faster turn-around has been influential in the devel-

opment of massively parallel hardware and software.

SPLITFLOW is a CFD code developed at Lockheed Martin Tactical Aircraft

Systems (LMTAS). This code automatically builds an unstructured Carte-

sian grid around the geometry of interest. The Euler equations are then

solved on the grid (the Navier-Stokes version is under development). The

grid is periodically refined such that various featuresmay be resolved with
more grid cells (Ref.4). Thus, the user is not required to manually generate
astructured grid. SPLITFLOWhasproven to be apowerful tool for quickly
predicting properties around extremely complex geometries.The popular-
ity of SPLITFLOW haswarranted an effort to improve its speedbeyond
that possible with autotasking on multiprocessor computer. Parallel com-
puting is the next logical step in accomplishing this objective. The solver,
and somenon-solver tasks,have the potential for nearly ideal paralleliza-
tion.

The objectives of parallelizing SPLITFLOW:
1) Ability to usemassively parallel machine

-Accessto machines like the IBM SP2is expected to increase.
2) Improve performance on conventional coarsegrain machines

-Accessto the Cray C90 and J90is common and heavily used.
3) Network severalworkstations together for a single application

-SGIworkstations areabundant at LMTAS, and may bededicated at

night.
4) Maintain modularity and consistencywith non-parallel SPLITFLOW

-Developments in SPLITFLOW must be easily implemented in paral-
lel SPLITFLOW._

Many architectureshave specializedhigh performance libraries for passing
messagesbetween processors.A singlemessagepassingpackagecommon
to most machines is necessaryto satisfy the considerations listed above.
Thus, Parallel Virtual Machine (PVM) was selectedasthe messagepassing

protocol (Ref.5).

The addition of multiple moving bodies is planned for a future develop-

ment phase.

2.0 General Description of SPLITFLOW

Code formulation

Cartesian grid techniques have been developed as a means of fast auto-

matic grid generation (Ref. 6,7). The methods generally utilize nested cell

subdivision to generate the computational mesh around geometries. The

grid generation is generally automatic and can handle extremely complex

geometries. SPLITFLOW is a finite-volume Euler/Navier-Stokes code

which utilizes cubical cells. Attributes of SPLITFLOW include automatic

cell division and domain boundary decomposition from a computer-aided

design (CAD) surface definition. The code is upwind in the inviscid

regions, and flux limiters are available to reduce oscillations near shocks.

Inviscid regions utilize Cartesian grid topology, while a prismatic grid gen-

erator (under development) is used for viscous regions. As shown in Fig-

ure 2.1, the Cartesian grid method produces rapid subdivision of root cells,

and a known cell aspect ratio for ease of reconstruction of face information.

Solution grid adaptation is included within the code, using several user-

selected functions. The code offers extremely fast user setup times, on the

order of 20 to 40 minutes.

Figure 2.1: Cell Dividing into 8 Children

Surface Representation

The surface geometry is input as a triangulated surface mesh. This mesh is

provided by the engineering computer aided design (CAD) package used

to define the configuration. By interfacing with the CAD package directly,

conversion of geometry to CFD surface definitions is eliminated. The sur-

face in the CAD file is defined as a list of X, Y, and Z coordinates and a con-

nectivity in the form of three node numbers corresponding to the indices of

the forming points of each triangle making up the surface. The geometry

facetsare oriented such that the surfacenormals point into the computa-

tional domain. Subsetsof the facetscanbegrouped together in a seriesof
ASCII files, so that in the assemblyof the facesof the grid described below,
eachcanbe associatedwith a particular boundary condition type suchas

no-slip, symmetry, characteristic slip wall, etc.

Grid Generation

The construction of the Cartesian grids within SPLITFLOW begins with a

boundary face file consisting of triangular facets describing all 6 faces of

the grid, including the body surface. For viscous analysis (not included in

this report) the prismatic grid generator would be employed to build an

initial grid suitable for viscous analysis. The Cartesian grid would then use

the outer layer of the prismatic grid as its boundary surface. As shown in

Figure 2.2, SPLITFLOW finds the intersection between the Cartesian cells

at the boundary and the surface faces, and constructs smaller facets in the

intersection plane which are used to reconstruct each cut boundary cell.

Thus, the boundary cells contain portions of the surface boundary and

inherently capture the surface resolution provided by the user in the

boundary face file. The number of subtriangles (boundary facets) con-

structed within each surface facet range on the order of 4 to 10, but all the

subtriangles are coplanar with the original facet (geometry facet) provided

in the face file. Each boundary subtriangle is connected to a unique Carte-

sian boundary cell. The size of the Cartesian cells, and resulting number of

grid levels, is determined by the size of the facets provided in the face file.

Some control is provided by setting a scale factor (bndscale) for the facets

on each face, and a minimum Cartesian cell length term (dxyzmin), in the

input deck.

Figure 2.2: Boundary Cutting Process

Cell

Boundar
Facets

Facet

An octree data structure is used to store information for each Cartesian cell

during the recursive grid generation process. A subdivided cell produces

eight new offspring cells, as shown in Figure 2.1. The parent is retained in

the grid after the subdivision. The information stored for each cell consists

of the global index of the parent cell, the global indices of the eight children

that may exist and the grid level of the cell. The grid 'level' refers to the

number of times the root cell has been recursively subdivided to create this

particular child. Since the position of each offspring cell (in relation to its

parent) is predetermined in the subdivision process (due to the Cartesian

topology) the neighboring cell indices can quickly be determined. In addi-

tion, many of the search procedures make efficient use of the octree data

structure.

Initial Grid Refinement

The initial Cartesian grid is generated based on the resolution of the trian-

gulation of each of the surfaces in the boundary surface file. All surfaces

are triangulated, including the far-field boundaries. Generally, the surface

of the vehicle of interest will contain a much denser mesh of triangular fac-

ets than far-field boundaries. The root cell defined by the boundary face file

is termed grid level 1, and is subdivided in the X, Y, and Z directions result-

ing in eight offspring cells at grid level 2. Figure 2.1 shows the subdivision.

Each offspring cell is recursively subdivided based on a cell length-scale

criterion. The length scale of each cell is compared with the length scale of

all the geometry facets that are contained within the cell or are touched by

the cell. The cell length scale is defined as the length of the sides of the cell.

The length scale of the geometry facet can be defined as the average length

of the three sides of the facet. If a particular cell is larger than the facet

length scale multiplied by a user-specified scale factor, the cell is subdi-

vided. This process continues down each branch of the octree data struc-

ture until all cells without offspring satisfy the length scale criterion.

During the subdivision process, grid smoothing constraints are enforced.

No cell can have more than four neighbors on any side. This is equivalent

to limiting the differences in grid levels between adjacent cells to one. This

constraint is enforced so that the octree data structure can be used to rap-

idly determine the neighbor information of the cells on all grid levels. Any

refinement resulting from this constraint quickly propagates through the

grid. The resulting grid has fine resolution cells near the bodies, and coarse
resolution cells in the far field.

The robustnessof the grid is checked.Cartesiangrid generation may result
in invalid cells which aredivided into multiple distinct volumes near thin

sharp regions. SPLITFLOW usesan areasumming approach to sum the X,
Y,and Z areacomponents of the boundary facetsin eachcell that lies along
the boundary. First, if any of the areacomponentssum to zero while the
maximum magnitude of the areacomponent is non-zero, then the cell may
be an invalid cell. Second,if large negative and positive summations occur
then the cell may be invalid. Thesechecksassurethat invalid cells are elim-

inated. Figure 2.3 illustrates refinement to "fix" an invalid cell.

Figure2.3:Refinementof an Invalid Cell

Invalid Cell Valid Cell

Grid Adaptation

Once the volume grid has been created based on the face geometry, cells

within the volume grid are subdivided additionally during the solution to

various levels, depending on the local flowfield gradients. SPLITFLOW

contains gradient computations of several functions such as static pressure

or Mach number. These functions are selected by the user, and are used to

refine or coarsen the grid. The gradient of each chosen adaptation function

is computed across the cell and multiplied by a length scale. This length

scale is calculated from the cell volume and is then adjusted by an expo-

nent based on a user selected term. This gives some control for supersonic

flows where shocks cause such high gradients that the cells near the shock

tend to dominate the adaptation function statistics.

The statistical approach used for assessing the need for grid adaptation is

shown in Figure 2.4. This approach dramatically reduces the requirement

for user decisions about grid adaptation. Unlike other Cartesian grid

schemes, no rain/max cell size or tolerance needs to be defined, and no

user-defined "sequence" of adaptation (suchasa number of cycles each

having several grid levels within each cycle). Rather, the actual gradient

information is computed across every cell in the entire domain. Physically-

based adaptation functions (selected by the user), such as pressure or

velocity, are calculated using these gradients. The user simply defines the

thresholds of the values on the adaptation function at which cells will be

marked for refinement or deletion. These thresholds (called gradmn and

gradmx) are applied to the statistics of the adaptation function(s). Refine-

ment occurs automatically for cells which exceed the threshold. Cells

which fall below the lower threshold of the adaptation function are

marked for deletion. Deletion (which coarsens the grid) occurs for cells in

which all 8 children have been marked. The objective is to create a uniform

value of the adaptation function across all the cells and avoid either 'hot

spots' in which large gradients exist, or regions of minimal gradient where

cells could be removed without disturbing the solution. After refinement

has been completed (or the target number of cells is reached), the grid is

smoothed such that adjacent cells differ by no more than one grid level.

Figure 2.4: Statistics Used in Grid Refinement

Q)

"6

E
Z

I I I

/, i\
/ i i \ ,_

Value of Adaption Function

E

E

_E

The user input file contains the grid generation cell resolution terms (bnd-

scale and dxyzmin) which allow control of the minimum Cartesian cell

size. The adaptation of the volume grid to flowfield gradients is controlled

by the terms gradmx and gradmn in the input file.

As the solution proceeds, refinement events occur periodically. Cells are

added or deleted, and the residual spikes then falls. The general trend for

the residual is to progressively drop, and generally 3-4 orders of magni-

tude of convergence of the L2 norm of the residual are achieved.

Numerical Formulation

The governing equations are the Reynold's averaged, compressible

Navier-Stokes equations. The discrete-integral form of the equations for an

arbitrarily-shaped cell is given as:

?IS

_t AQ+ Z (Fi-Fv)mt(nmCm)
rtl=]

where ns is the number of sides of the cell (ns may be high for a cell with

complicated boundary cuts). The flux F and vector Q of unknowns are

from the conventional conservation-law formulation. The cell volume is

represented by n and At is the time step. The outward-pointing unit nor-

mal vector for face rn is nrn and the surface area is given by ore. The inviscid

flux for face m is denoted F i, and the viscous flux as F z, The viscous terms

are only calculated in the developmental version of SPLITFLOW which

uses the prismatic grid near the solid surfaces. The version of SPLITFLOW

which has been released uses a Cartesian grid for Euler applications only.

A steady-state solution to the governing equations is obtained by using an

implicit time marching scheme. Upwind fluxes are used for the inviscid

terms, and central differences are used for the viscous terms. A point-wise

implicit time integration scheme with sub-iterations is used to advance the

solution. The numerical form of the implicit equation is:

?1._"

= - __ aQg-_ - (Res)U- l

where c is the cell of interest, and n indicates the neighbor of c which

resides across face m. Res is the residual vector computed as the sum of the

fluxes over the cell. I is the identity matrix. The current time level and sub-

iteration level are designated with N and s, respectively.

The flux Jacobians are the inviscid Jacobians consistent with Roe's scheme,

assuming no extrapolation of data. By using the _)Q's from the previous

sub-iteration for the neighbor cells and adding the influence to the right-

hand side, the equations require a block inversion of a 5X5 matrix for each

cell. The inverted matrix is computed during the first sub-iteration and

9

stored for use in subsequent sub-iterations. Typically, 10 to 20 sub-itera-

tions are used to converge the implicit equation at each time level. Sub-iter-

ation convergence is monitored by the code.

The Courant-Friedrichs-Lewy (CFL) number is automatically adjusted by

the code, depending on the sub-iteration convergence characteristics. CFL

numbers on the order of 5 or more are possible for most problems.

The inviscid fluxes are computed using Roe's approximate Riemann

solver. Second-order steady-state accuracy is achieved by extrapolating

from each direction to define the state on each side of a cell face. The flux is

then calculated by Roe-averaging these two states. These extrapolated

states are a bit more complicated to calculate in the octree grid than with a

typical structured grid. Figure 2.5 shows a cell with different sized neigh-

bors. The state at face 0-1 is extrapolated from the centroid of cell 0 by com-

bining the gradient information at point 0 with the state interpolated

between points 0 and 1. They are combined by removing the influence of

point I from the gradient at point 0, which was calculated from the condi-

tions at the centroid of cell 0 and all of its neighbors (including cell 1). For a

grid with one neighbor per side, this is equivalent to conventional linear

extrapolation resulting in a second-order differencing scheme. This is not

equivalent to a Fromm scheme, which would preserve some influence of

point I in the state on the 0 side of face 0-1.

Figure 2.5: Extrapolation to Cell Face

5

face 0-1

A minmod or superbee flux limiter is used to reduce the oscillations near

discontinuities, and the entropy fix of Harten (Ref. 8) is used to prevent

non-physical expansion shocks.

10

User Work-load

The time required to set up a problem is generally 20 to 40 minutes. The

avoidance of volume grid generation and the simplicity of construction of

face grids are seminal features of SPLITFLOW. Also, the addition of new

surface geometry is easily accomplished, such as a new tail or modified

body shape.The steps of user involvement in creation of a SPLITFLOW

grid are listed below:

1) The user determines the level of surface resolution using the com-

puter-aided design (CAD) system. This surface definition is made up

of a number of triangular facets.

2) The outer boundaries of the domain are defined, and a symmetry

plane is constructed by running LMTAS software tools which read

the outer boundary points and the centerline of the CAD surface file

to generate a faceted triangulated symmetry plane. The user also

makes simple ASCII files of the outer boundary faces (consisting of

large triangles containing the corner points of the domain).

3) The boundary faces are then assembled into a total file using an

LMTAS software tool, 'spfbnd'. This boundary file is one of the input

files to SPLITFLOW.

4) The user generates a namelist file containing flow conditions, grid

adaptation parameters, surface integration reference terms and

requested print data such as surface pressures.

5) The user runs SPLITFLOW.

11

3.0 Approaches Considered for Domain Decomposition

The parallelization of SPLITFLOW causes the overall solution to be

divided into several small semi-independent jobs, rather than one large

job. The best performance results when these small jobs run simulta-

neously with computational and memory requirements distributed evenly

among them (load balanced). Two approaches for decomposing the prob-

lem were considered for best accomplishing this:

1) Decompose domain based on octree data structure:

The problem is divided into pieces according to the first (or second)

generation of octree children. This approach allows the initial division

of the root cell to occur in one of the jobs. Each first generation child is

then sent to a computational node where further grid generation may

be performed in parallel with other nodes. Solver tasks may then be

performed on the final grid domain residing locally on any node. Fig-

ure 3.1 shows a 2-dimensional wedge example divided into 4 subdo-

mains.

Figure 3.1: Octree Decomposition

Advantages:

a) Decomposition of the global domain is very simple.

b) Nearly all tasks (except writing global output files) are parallelized

to some degree.

Disadvantages:

a) Memory requirement for any one node may be very high due to the

uneven final distribution of grid cells among the nodes. Because any

one node may contain more than its "fair share" of grid cells, each

node job must be dimensioned accordingly.

12

b) Time required to run a problem may not decrease significantly due to

the poor load balancing. If one node contains most of the grid cells,

then it will take more time to perform its calculations while the other

nodes wait.

c) The number of nodes onto which the domain is divided must be a

power of two in order to simply distribute the problem onto the

nodes.

2) Decompose domain into sub-domains of equal cell number:

The host job generates the grid. The active cells without kids are sorted

according to the X (or Y or Z)-coordinate of one corner. The cells are

evenly distributed to the nodes. Boundary Cells may be sorted and dis-

tributed separately for more uniform memory requirements. Certain

grid generation and post-processing tasks may be parallelized sepa-

rately. Figure 3.2 shows the previous 2-D example decomposed accord-

ing to the sorted cells.

Figure 3.2: Sorted-Cell Decomposition

Advantages:

a) Memory requirement on each node is more uniform and propor-

tional to the subdomain size.

b) Computational load is well balanced for the parallelized tasks.

c) Any number of nodes may be used.

d) Future development may result in better parallelization of non-

solver tasks.

Disadvantages:

a) Grid generation is performed primarily on one node.

b) Domain decomposition is more complicated.

c) Interfaces between subdomains may be large and complex.

13

Approach 2 was selectedasthe philosophy to adopt when parallelizing
SPLITFLOW becauseof its superior properties of load balancing memory
and CPU requirements.

In a typical problem, the number of boundary facets is approximately

twice as high as the number of grid cells. These boundary facets tend to be

concentrated in regions of complicated geometry. Experience with a simple

airfoil case has shown that a grid divided into subdomains with a uniform

cell distribution and low interface areas may have very unevenly distrib-

uted boundary facets. Even among the boundary cells, the number of

boundary facets may vary tremendously (i.e., one boundary cell may have

fifty boundary facets while another has only one). Because SPLITFLOW

has several working arrays which are dimensioned to the number of

boundary facets, the memory requirement of the code depends more

heavily upon the number of boundary facets than the number of grid cells.

If the boundary facet distribution is not considered, then the memory

demand among the processes may vary by an order of magnitude. There-

fore, load balancing for memory is a strong function of boundary facet dis-

tribution. However, load balancing for CPU time is a strong function of

grid cell distribution (although boundary facets are a small factor in the

CPU requirement). Thus, an even distribution of grid cells and boundary

facets is mandatory for the benefits of distributed parallel computing to be

realized on the computing platforms readily available to LMTAS.

Approach 2 has a higher interface overhead than approach 1. Three penal-

ties are associated with interface cells. First, the additional memory

requirement in SPLITFLOW is quite small unless the sum of the interface

and non-interface cells exceeds the number of boundary facets, in which

case the working arrays must be dimensioned to the larger number. Sec-

ond, the CPU time required by the solver for an interface cell is approxi-

mately one sixth that for a non-interface cell because only one of its six

faces usually requires flux calculations. Third, the PVM message passing

buffers and libraries can demand significant system time and memory

when the number of subdomains (and therefore interface cells) is large.

The decomposition methods discussed in the public literature were not

considered because most are intended for standard unstructured grids,

14

and do not addressthese issues.Also, many of them use recursive bisec-
tion and arebestsuited for a decomposition where the number of subdo-

mains is limited to a power of two. The freedom to decomposeinto any
number of subdomains is a desirable feature for applications at LMTAS.
In the future, more sophisticated ways of decomposing the domain may be
developed with smaller interfaces,and which addressthe concernsmen-
tioned above.

15

4.0 Modifying SPLITFLOW for Parallelization

Actual process of parallelizing SPLITFLOW required the following steps:

1) Identify subroutines required for the solver to work on a subdomain.

2) Group these solver subroutines for use in the "node" code.

3) Keep grid generation tasks and file writing in the "host" code.

4) Identify data transfer requirements from the global domain to the

subdomain.

5) Develop an efficient domain-decomposition technique.

6) Develop working versions of "host" and "node" codes.

7) Continue with parallelization of other tasks.

Domain D_composition

The most important feature which the node code must possess, besides its

ability to run in parallel with copies of itself, is that its memory require-

ment must be proportional to the computational size of the subdomain.

That is, if a particular subdomain has one fourth of the grid cells of the glo-

bal domain, then the memory requirement of the node code should be

approximately one fourth that of the non-parallel version of SPLITFLOW.

While this may seem like an obvious and minor point, it can cause prob-

lems because it forces the grid cells and boundary facets to be evenly

grouped and renumbered into subdomains for use in the node code. Con-

sequently, the octree data structure is very difficult to preserve when fam-

ily lines to first generation cells are disrupted to reside on different

processors.

The first step in decomposing the computational domain is to sort the

active cells without children according to the minimum X-value of their

vertices. The user may opt to sort on the Y or Z value. The sorted cells are

then separated into boundary cells and interior cells. (A boundary cell is

simply a cell which contains at least one boundary facet.) The boundary

cells are distributed such that the boundary facets are fairly evenly divided

among the nodes. The interior cells are divided such that the overall num-

ber of cells (boundary + interior) on each node is uniform. This procedure

produces even distributions of cells and boundary facets for any number of

nodes, thereby achieving a load balance. The cells, boundary facets, and

neighbor information must be reindexed to correspond to the local grid on

16

each processor. A neighbor which resides on a different node must be

treated specially as an interface cell, requiring inter-processor data trans-

fers. Figure 4.1 tabulates the load balance information for the 2-D wedge

example. For illustrative purposes, all boundary cells are assumed to con-

tain the same number of boundary facets. Thus, an even distribution of

boundary cells is equivalent to an even distribution boundary facets.

Figure 4.1: Decomposition Load Balance

I # # # 1sclive boundary interface

cells cells cells 1
I 17 8 9

17 8 16

17 8 15

17 8 8

Neighbor Cell Definition

The octree data structure is used extensively for defining the relationship a

cell has with other cells. Each cell carries with it several arrays which con-

tain the indices of its parent, children, and neighboring cells. Because adja-

cent grid cells are allowed to be no more than one grid level apart, each cell

may have up to four neighbors on each side. In non-parallel SPLITFLOW,

when a cell has four neighbors on a side, then the index of the parent of

those four cells is stored. When necessary, that neighbor is checked for chil-

dren, and information from the appropriate children is retrieved.

In order to avoid the need to know parent and child information on the

nodes, the neighbor data structure must be modified. In an old version of

parallel SPLITFLOW, it was initially modified to store the indices of four

neighbors per side of every cell. This resulted in rather extensive modifica-

tions to several subroutines, causing a deviation from non-parallel SPLIT-

FLOW, and consuming a significant amount of additional memory.

However, further inspection of the problem revealed that adequate infor-

mation may be obtained by storing only the pointers from small cells to

large cells (or equally sized cells). If a particular side of a cell has multiple

neighbors, then, rather than storing the index of the parent, a negative

17

number is stored which serves as a special flag indicating that the neigh-

bors on that side are of a lower grid level. Different negative flags have var-

ious meanings indicating whether that cell is a boundary cell, or outside

the computational domain, etc. Thus, the neighbor pointer data structure is

very similar to that of non-parallel SPLITFLOW, and only active cells with-

out children need to be present on any processor, and full octree informa-

tion is unnecessary on the nodes. Figure 4.2 shows an example of the one-

way pointers which SPLITFLOW requires.

Figure 4.2: One-Way Neighbor Pointers

Interface Cell Definition

Interface cells are cells which must be imported from other nodes because

they are adjacent to the subdomain cells assigned to the local node. These

cells require inter-processor communication for transferring and updating

the interface cell information. Interface cells are found by searching the

neighbor pointers for a neighbor residing on another node. Cells point only

to larger or equally sized cells, and not vice versa. Thus, when an extra-

nodal neighbor index is detected, then that neighbor must be imported,

and the cell doing the pointing must be exported as an interface cell to the

other node. The pointwise implicit solver requires that the interface cells

have updated convergence information every sub-iteration, and an

updated solution every iteration. Although the solution is not computed

locally for interface cells, the interface updates are required for gradient

and flux calculations to be accurate for the subdomain cells. The node code

must possess adequate memory resources to store the assigned subdomain

cells plus the interface cells. The percentage of cells which are interface

cells generally increases with the number of nodes. Figure 4.3 illustrates

the computational cells and interface cells for one of the subdomains in the

2-D wedge example.

18

Figure 4.3: Interface Cell Determination

16 Interlace cells from

surrounding subdomalns

J

17 active subdomsin ceils

(including 8 boundary cells)

Parallelizing the Solver

Because SPLITFLOW generally spends a majority of its time in the solver

(over 75%), the parallelization efforts have been concentrated on this task.

The application of the load balancing techniques, described previously,

render a solver with a nearly ideal speed-up over its non-parallel counter-

part.

Parallelization vf nqn-Solver Tasks

The non-solver tasks which are currently partially parallelized are: grid

refinements, domain decomposition, post-processing, and grid metric cal-

culations. The grid refinement tasks which are performed on the nodes are

the calculations of the grid adaptation functions and statistics. The sorting

of adaptation functions and octree grid manipulation is performed on the

host.

The domain decomposition is coded such that the host code sorts the cells

into subdomains, and sends them to the nodes. The nodes determine the

interface cells and construct the arrays for transferring interface informa-

tion among the nodes.

Post-processing consists of the integration of forces over surfaces, and the

determination of conditions along a surface contour defining its intersec-

tion with a user specified plane. Both of these tasks require averaging

19

boundary facet information onto the appropriate geometry facets. The

nodes partially average and integrate within their local subdomains. The

host code collects and sums these subdomain values for the global values.

The grid metrics consist of boundary facet areas, unit normal vectors asso-

ciated with boundary facets, cell volumes, and uncut cell wall areas. The

host code determines the boundary facet vertices, areas and vectors. The

nodes then use the boundary facet information for calculating the volumes

and uncut cell wall areas.

Non-Parall¢lized Tasks

As mentioned above, the boundary facets are determined on the host. Cal-

culation of the boundary facets is part of the grid generation and refine-

ment process, and relies heavily upon the octree data structure in the

search for the intersection between grid cells and geometry facets. The

shape of this intersection is required for finding the boundary facet verti-

ces. The determination of this intersection is computationally intensive and

involves searching and checking various combinations of conditions. The

facet area calculation is rather trivial once the vertices are determined.

Because boundary facet determination is part of the grid generation pro-

cess, it cannot be postponed until the after grid is generated (as is the case

with the other grid metrics). The host currently performs all of the bound-

ary facet determination because the octree data structure is not available on

the nodes.

Ideas for rewriting the logic to separate and parallelize the non-octree tasks

have been discussed, but none have been implemented to date because of

planned upgrades to non-parallel SPLITFLOW which involve this task.

The production version of SPLITFLOW is the non-parallel version, where

most new features and upgrades tend to originate. These upgrades are

then incorporated into parallel SPLITFLOW. The current logic in non-par-

allel SPLITFLOW for boundary facet calculation is likely to undergo a

major rewrite for application to multiple moving bodies (an upgrade

planned for Phase II of SPLITFLOW parallelization). Boundary facet vertex

determination is a very time-consuming part of the grid generation and

refinement process, and its parallelization will undoubtedly improve the

performance of SPLITFLOW in a massively parallel environment where

2O

grid generation tasks consume a large portion of the wall clock time.

Although a non-parallelized task is performed on a single processor, the

other processors need not be idle. Such is the case with writing the global

output files. The host may be occupied with writing these large files while

the nodes are continuing to iterate in the solver. The nodes send conver-

gence information to the host during every iteration. However, the asyn-

chronous nature of PVM transmissions permits the message sender

(nodes) to continue executing even though the message may be waiting in

a buffer until the message receiver (host) is ready to access it. Several mes-

sages from the nodes may collect in this way while the host is occupied

with writing out the restart and plot files. The overall wall clock• time

improves when solving and writing are performed simultaneously. There-

fore, normal operation will be in this mode. However, for an accurate

breakdown of the wall clock time spent performing various tasks, they

must not overlap. Thus, for research purposes when time accounting is of

interest, the code may be run in a mode where the nodes are held idle until

the host completes the file writing, a very time-consuming task on some

architectures.

The run-time behavior is determined in SPLITFLOW by activating (or

deactivating) a feature which causes messages to be sent from the host to

the nodes at the beginning of every iteration. Enabling this feature also

allows the user to stop the code prematurely by editing a "stop-check" file,

which is opened and read during every iteration. The nodes are forced to

wait for a signal from the host indicating whether or not the current itera-

tion is the last one.

21

5.0 Performance of Parallel SPLITFLOW

Parallel SPLITFLOW was run on several different platforms. The first two

platforms were used for debugging only. Next, two coarse grain shared

memory machines are discussed. Last are two massively parallel machines:

1) SGI workstation network at LMTAS (for debugging)

2) Cray J90 at LMTAS (for debugging)

3) SGI Power Challenge at the National Aerospace Simulator (NAS)

4) Cray C90 at Cray Research

5) Cray T3D massively parallel machine at Cray Research

6) IBM SP2 massively parallel machine at NAS

SGI at LMTAS

The vast majority of the developmental work was performed on a network

of five SGI workstations including two Personal Irises, two Indigo 2's and

an Indy. These machines were used only to debug the parallel code, not for

timings. The debugging case was a very small supersonic double wedge

which generally had less than 2000 grid cells.

Gray]90 at LMTA$

The Cray J90 was used to debug the code for Cray architecture. Each of the

8 processors on the J90 has a theoretical speed of 200 MFLOPS (Ref. 9).

Test Case for Timing Comparisons

Timing comparisons were performed with parallel SPLITFLOW on the

Modular Transonic Vortex Interaction (MTVI) geometry (described in more

detail in the validation section) for 99 iterations, with one grid refinement

after 50 iterations. Global restart and plot files were written during refine-

ments and at completion. The initial solution, which included the initial

grid with all cells initialized to freestream, was read in from a restart file.

The generation of this initial grid is unparallelized, and required 255 sec-

onds on one processor on the C90. The number of computational grid cells

grew from its initial size of around 110,000 cells and 560,000 boundary fac-

ets to its post-refinement size of 151,000 cells and 570,000 boundary facets.

The number of grid cells in the full octree data structure grew from approx-

22

imately 170,000to 208,000.Thesenumbers varied slightly between archi-
tecturesdue to tolerancesin the boundary facetcalculations.

Table 5.1shows the memory requirement of SPLITFLOW on the Cray J90
and the IBM SP2.The host and node codesmay be compared with the non-
PVM code on the Cray, whoseshared memory allows either the PVM or
non-PVM approach to be employed. However, the SP2only allows the
PVM approach becauseof its distributed memory architecture. Generally,
on the sharedmemory machines, the host and node codeswere dimen-
sioned such that the sum of the memory requirements of the host and all

copies of the node codewould fit on the machine.Thus, the memory per
node code varied with the number of copiesbeing used,and often
exceededthat required to run the actual problem. On the distributed mem-
ory/massively parallel machines,however, the host and node codesare
dimensioned to fill the local memory of the dedicated processors.

Table5.1: SPLITFLOW Memory Requirement

SPLITFLOW Code
Number of

Cells

Number of

Boundary Facets

Cray J90 non-PVM 250,000 600,000

Cray J90 host 250,000 600,000 223

Cray J90 node 150,000 300,000 265

IBM SP2 host 700,000 1,400,000 420

IBM SP2 node 70,000 120,000

Required memory

(Mbytes)

615

120

Cray C90 at Cray Research

Each of the 8 processors on the C90 has a theoretical speed of 1000

MFLOPS (Ref. 10). Because this platform represents the hardware available

to the typical SPLITFLOW user at LMTAS, it is the most important test bed

for parallel SPLITFLOW. It allowed a comparison of non-parallel SPLIT-

FLOW, autotasked over several processors, with parallel SPLITFLOW

using Cray's production version of PVM to link several processors.

Tables 5.2a and 5.2b show the timing breakdown of several tasks for paral-

23

lel SPLITFLOW and autotasked SPLITFLOW. Each run includes three

domain decompositions: one for initialization, and two during the grid

refinement (one for cell deletion, and one for cell addition). The decompo-

sition time decreases as the number of nodes increases from I to 7, but

increases slightly for 8 nodes. The solver time, as expected, decreases

sharply with the number of nodes. Grid refinement, the most time-con-

suming non-solver task, requires an amount of time independent of the

number of nodes. However, the parallel code is about 35% faster at this

task than the autotasked code. Thus, a non-scalable benefit is realized in

the partial parallelization of the refinement tasks.

Table 5.2a: Cray C90 Timings for Parallel SPLITFLOW (seconds)

Number
of Nodes

1

2

3

4

Domain

Decomposition

43.4

28.4

23.7

Solver

1186.0

607.8

418.5

Grid

Refinement

81.8

80.5

81.0

File

Writing

17.3

17.3

17.4

Overall

1409.2

794.2

594.5

20.9 323.4 80.7 18.5 494.5

7 17.7 222.1 80.8 17.6 387.0

8 18.6 208.8 81.2 21.5 379.4

Table 5.2b: Cray C90 Timings for Autotasked SPLITFLOW (seconds)

Number

of Nodes
Solver

Grid

Refinement

1 1241.5 130.5

2 830.6 122.6

3 671.1 121.4

4 610.7 121.6

511.9 121.48

File

Writing

11.6

Overall

1651.7

12.3 1231.0

11.7 1069.2

12.4 1009.7

14.5 920.0

Although the overall wall clock times for the single node PVM case and the

single CPU non-PVM case were expected to be approximately equal, the

parallel case was about 15% faster. Several factors contribute to the speed

difference. First, the logic coded for certain tasks was modified for more

24

efficient parallelization. Second, the parallel version has more efficient

memory utilization. The host code has much smaller working arrays on

which to perform gathering and scattering operations. Third, the subdo-

main cells are sorted and reindexed such that neighbors reside near each

other in core memory, as well as physical space. Thus, when the neighbors

of cell i must be accessed, each neighbor's index will be close to i. This

results in reduced bank conflicts and faster memory utilization. Finally,

some functional parallelism exists on the host and node. For example, the

node could start its next iteration while the host is still writing output

(because the stop-check feature is deactivated). However, this particular

factor is considered negligible on the C90 because it spends a small per-

centage of its time writing files. The speed of the C90 on parallel SPLIT-

FLOW was estimated at 220 MFLOPS per processor.

The C90 is the only platform where the stop-check feature was deactivated.

This feature was turned off so the host job could share a processor with one

of the node jobs for the 8-node case. The host job only needed to be active

during start-up, grid refinements, and shut-down. The host could "sleep;'

through the iterations and allow the messages from the nodes to collect

until it "woke up" and received them. Because only one job is allowed to

be awake on a processor, the node job which resides on the host's processor

must sleep while the host is awake. Thus, some penalty is expected, but

that penalty would have been greater if the node had to receive a stop-

check message from the host every iteration. The penalty was small

enough that the overall performance improved when the number of nodes

increased from 7 to 8.

Figure 5.1 shows results of the timing comparison. The speed-up of the

solver, and the overall run are plotted. The speed-ups are relative to the

single-node non-PVM results. The solver time is calculated on the host as

the time it spends waiting for convergence history information from the

nodes. Included in the solver time is the message passing among the nodes

for interface cell information during the sub-iterations. The solver, as

expected, scales fairly well with the number of processors. However, the

overall performance is degraded somewhat because the grid refinements

are not highly parallelized at this time. The curve of Amdahl's law was cal-

25

culated from the equation (Ref. 11):

Speed- Up -
R+(1-R)

N

where R is the fraction of the time which cannot be parallelized, and N is

the number of processors. For this case, R was calculated as the fraction of

time spent writing files only, since this task is currently unparallelized.

Figure 5.1 also shows the percentage of time spent in the solver. As this

value decreases, the effect of further parallelization decreases because the

solver has received most of the parallelization effort to date. The last plot

shows the overall percentage of interface cells. It is calculated from:

percentage = 100 x (interface)
(interface + computational)

SGI Power Challenge at NAS

The SGI Power Challenge has 8 R8000 processors, each with a clock speed

of 90 MHz and a theoretical speed of 360 MFLOPS (Ref. 12). The machine

used for most of the cases had 2 Gbytes of memory. This platform provides

a second coarse grain shared memory test bed.

Timings were obtained for the test case on the SGI with 1, 2, 3, 4, 7, and 8

processors. The stop-check feature was activated for the SGI cases. Timings

were also obtained for the non-parallel code autotasked over 2, 3, 4, and, 8

processors. A single processor non-PVM case was not obtained because of

the difficulty in accessing a machine with a 90 MHz R8000 processor for an

adequate period of time.

Tables 5.3a and 5.3b show the timing breakdown of several tasks for paral-

lel SPLITFLOW and the autotasked version of SPLITFLOW. The time

required for domain decomposition shows a general trend of decreasing

with the number of nodes. The solver time, of course, decreases with the

number of nodes. The grid refinement time is almost perfectly constant

and consumes 1.3% of the overall time for the single processor case. The

26

time spent writing files is fairly constant at 1.5% of the single node time.

Table 5.3a: SGI Timings for Parallel SPLITFLOW (seconds)

Number Domain

of Nodes Decomposition

1 115

2 88

3 78

Solver Grid File Overall
Refinement Writing

10567 144 162 11097

5357 141 171 5853

3613 139 176 4107

4 59

7 65

8 52

2855

1860

1731

139 174

140 176

141 188

3337

2381

2242

Table 5.3b: SGI Timings for Autotasked SPLITFLOW (seconds)

Number
of Nodes

Solver
Grid

Refinement
File

Writing
Overall

2 6173 438 85 7098

3 4784 438 87 5703

4 4118 436 86 5045

8 3055 491 94 4076

Figure 5.2 shows the performance for the MTVI test case. All speed-ups are

relative to the single-node PVM case. The scalability is fairly linear for the

solver and the overall solution because the solver consumes the over-

whelming majority of the clock time, even for the 8-node job. The auto-

tasked version on the SGI shows better scalability than the C90 autotasked

results, although the PVM version is clearly faster. The percentages of

interface cells differ slightly from the C90 because of the sorting of cells

which, except for round-off, have the same X-value. The SGI Power Chal-

lenge, like the Cray C90, demonstrated that parallel SPLITFLOW performs

well in a coarse grain environment. The Power Challenge performed at

approximately 30 MFLOPS per processor on parallel SPLITFLOW.

2"]

Gray T3D massively parallel machine at Cray Research

Each of the 256 nodes on the T3D contains 64 Mbytes of local memory, and

a DEC Alpha chip with a theoretical speed of 150 MFLOPS (Ref. 13). Its

architecture requires the number of dedicated processors to be a power of 2

(i.e., 2, 4, 8, 16, etc.). A Cray YMP with 52 Mwords of memory serves as the

front end.

Three cases were successfully run for timing comparisons with the produc-

tion version of PVM. They were run on 16, 32, and 64 nodes. At least 16

nodes are required for this problem on the T3D because of the memory

capacity on each node. The stop-check feature was activated for this case

for a more accurate accounting of the solver time.

Table 5.4 shows the timings of several tasks in the parallel code.The T3D

was the only platform tested where the decomposition time exceeded that

of the grid refinement. The number of seconds required for decomposing

and refining was fairly constant as the number of nodes increased. The

solver time, again, decreases as the number of nodes increases. The file

writing time, which is usually independent of the number of nodes,

increased with the number of nodes on the T3D. Swapping may have been

occurring during this task. Like all parallel platforms, the T3D must spend

time allocating memory for message passing. However, this time became

increasingly large when the nodes sent their subdomain solutions (large

transmissions) to the host for writing a global restart file. Newer optimized

versions of PVM may reduce this factor.

Table 5.4: Cray T3D Timings for Parallel SPLITFLOW (seconds)

Number Domain Grid File
Solver Overall

of Nodes Decomposition Refinement Writing

16 198.2 3096.2 144.9 78.6 3628.5

32 204.6 1499.3 144.4 251.8 2214.8

64 209.2 876.3 152.0 344.3 1736.5

Figure 5.3 shows the performance on the T3D. All speed-ups are relative to

the case with the smallest number of nodes (16 nodes). The T3D showed a

superlinear speed-up when the number of nodes was doubled from 16 to

28

32. This is possibly due to the entire problem fitting in cache memory. Dou-

bling again to 64 nodes shows a drop off in scalability. Figure 5.3 shows

that the 64-node case had a rather high percentage of interface cells (nearly

50%). The interface/PVM overhead is becoming significant within the

solver. Parallel SPLITFLOW performed on the T3D at an estimated 5

MFLOPS per processor.

The T3D's low memory per node results in the use of many processors,

even for medium sized cases. Thus, the number of interface cells is likely to

be high for realistic problems. This increases the number of inter-nodal

messages, each of which may require time for memory allocation. Thus,

the T3D is suited for running large numbers of parallel processors with

small messages transferred among them.

IBM SP2 Massively Parallel Machine at NAS

This platform proved to be the critical machine for testing massively paral-

lel performance, and for calculating final solutions in the validation cases.

The SP2 has 160 nodes, each containing 128 Mbytes of local memory (some

have 512 Mbytes), and a RS6000 processor with a theoretical speed of 265

MFLOPS (Ref. 14). The RS6000 achieves this limit with a clock speed of 66

MHz and the ability to perform 4 floating point operations per clock cycle.

Although the configuration and memory capacity per processor would

have allowed this case to run with 6 or 7 nodes. The smallest number cho-

sen for this comparison was 8 because it is a power of 2, and provides a

more familiar starting point for studying the effect of doubling the number

of nodes. The stop-check feature was activated for this case.

Table 5.5 shows the timings of several tasks in the parallel code. This is the

only platform where the solver time was reduced to such a small fraction

of the overall execution time. The time spent decomposing does not show a

dependence on the number of nodes. However, the grid refinement time

shows a slight decrease as the number of nodes increases. The occasional

writing out of restart files to the disk, proved to be more time-consuming

on the SP2 than on the other platforms. Although the file writing time

shows a slight decrease with larger numbers of nodes, this trend is gener-

29

ally not repeatable. The SP2 had the largest variation in timings for

repeated runs. However, this machine was always loaded with multiple

users. Only particular nodes were dedicated to running these cases. Thus,

i/o conflicts with other users may have introduced some variation in the

timings. Also, system bugs and PVM bugs often caused job delays or fail-

ures. These problems are being addressed by the staff at NAS and IBM.

Table 5.5: IBM SP2 Timings for Parallel SPLITFLOW (seconds)

Number

of Nodes

Domain

Decomposition
Solver

Grid

Refinement

File

Writing
Overall

8 22.3 1272.3 370.3 536.7 2433.9

16 22.4 692.8 363.0 533.2 1848.4

32 33.7 388.0 303.8 491.4 1449.4

Figure 5.4 shows the performance for 99 steps on the MTVI. While the

solver shows good parallelization on the SP2, the non-parallelized tasks

degraded performance. Due to the large amount of time consumed by file

writing, the overall benefit of fine grain parallelization was smaller on the

SP2 than the T3D. However, the SP2's higher theoretical MFLOPS rating

resulted in faster overall performance. The SP2 performed at approxi-

mately 18 MFLOPS per processor on parallel SPLITFLOW.

The SP2 allows any number of processors to be used, and the host code is

generally run on a high memory processor (512 Mbytes). However, this

memory limit on the host imposes a ceiling of around 700,000 cells on the

current version of parallel SPLITFLOW. While this is plenty for most Euler

problems of immediate concern, it is not adequate for all of them. Thus,

efforts are ongoing to reduce the memory requirement of the host code.

Expected Application at LMTAS

The current state of development of parallel SPLITFLOW makes it well

suited for a coarse grain parallel environment (about 10 processors). This

environment may be constructed by the average near-term user at LMTAS

by networking together available workstations, or by using a multiproces-

sor shared memory machine.

3O

Figure 5.1: Timing Comparisons on the C90

o
C
0_

.E
o

o=-

fl_

o
o3
o

_0

= k
m

-co

._z _

•4 -- ='¢

Z

dn-paeds

\\
o \\
0 m m

"6 _

m

ao r-- ¢D

L

\t

cO

f-.

_D

z

"6

Z

L)

.c_

L_

CO

l-
._c

"6

2

8 o® 8

_D

70

"5

Z

co

X
e0epelul %

r_

- m _D

Z

Z

i

, I1_ _11 '--!
_F

o o o

dR-peeds eW!l IleJeao lo %

31

Figure 5.2: Timing Comparisons on the SGI

c-

1= _E

ft.

2_
"6

&

dn-peeds

"k _.

\\

_='=>

cO

03 I_. _ _ _ o_ oJ

eoe,u e_,Ul%

f,.

,o #

z _

o_

8 _ 8 _

I;1o
IIIo_

_ 0

111z
z

1
_ °

dN-peeds oLu!IlleJeAOJo%

32

Figure 5.3: Timing Comparisons on the T3D

O
O
¢--

¢0

O

• o •

121

F-

o

"6
"1o

e_
if)

q_

0

Z

O o O

dn-pgeds

\

m

17
\\

dA-P_d S

Z

°

zi
D.

8

e0_,u_}lUl%

I
1

0 o 0
cO r,O '_r

ew!l IleJe^O to %

o

_0
_t

L , _D

o

Z

E

Z

33

Figure 5.4: Timing Comparisons on the SP2

O

r-

E =
,_ _E_

(M

l-
o

3
o

\
\
.,\

I °0
>

• _ .c_

._ Z "6

-cO

drl-peeds

o
"6
U]

"o

_J,,, \
m '-r-=' co

dn-peeds

L

0 0 0

e0epelul %

I-

E o
z &

, /
../

o o o(D ._t

/
T

f

ewLL II_.Je,*,O I.o %

\
04

o

04

_D

aD

O

O

Z

"6

Z

O
Z

..O

Z

34

6.0 Validation of Parallel SPLITFLOW

Two cases are discussed for the validation of parallel SPLITFLOW:

1) Modular Transonic Vortex Interaction (MTVI)

2) Lockheed Wing C

The host code, which was dimensioned to hold 700,000 cells and 1.4 mil-

lion boundary facets, requires 420 Mbytes of memory. Each node code,

which is dimensioned to store 70,000 cells and 120,000 boundary facets,

requires 120 Mbytes of memory.

MTVI

This geometry, which was provided by NASA Langley, has been the sub-

ject of Euler investigation for some time. The flight condition used for this

validation case is a Mach number of 0.85 and an angle of attack of 10

degrees. Sideslip and leading edge flap deflection are both zero. This case

was run on IBM SP2 on 17 processors (1 host and 16 nodes). The stop-check

feature was deactivated so file writing on the host could occur simulta-

neously with solving on the nodes. The superbee flux limiter was used for

suppression of numerical oscillations while allowing the solution to cap-

ture and resolve the suction in the forebody and wing vortex.

Figure 6.1 shows the general shape of the single tail MTVI. The pressure

coefficient is shown on the surface and in the flow field at several fuselage

stations of interest. The grid cell clustering toward the low pressure core of

the inviscid vortex is visible. Figure 6.2 compares the surface pressure coef-

ficient obtained from wind tunnel data with the SPLITFLOW solution. Fig-

ure 6.3 shows the location and cross sectional shape of the vehicle where

these comparisons are made. These results show the same trends as previ-

ously documented SPLITFLOW results (Ref. 15). On the forebody, the suc-

tion peaks are somewhat underpredicted. On the wing, the suction peaks

are overpredicted and more outboard than the experimental data indicates.

This is due to the Euler code failing to predict a secondary vortex (a vis-

cous phenomenon) which alters the shape of these peaks.

The convergence history is shown in figure 6.4. The solution ran for 700

iterations with the grid refining every 50 iterations. The superbee flux lim-

iter prevented the residual from dropping more than two orders of magni-

35

tude. Therefore, the solution was converged until the surface pressures

stopped changing at the fuselage stations of interest. The CPU times of the

nodes are nearly identical such that the curves are on top of one another.

The CPU time of the host is the shallowest curve. The low CPU time of the

host does not indicate that the host was idle. The host was occupied with

writing the global output files every 50 iterations, a task which requires a

large amount of wall time. (Recall that this task may be performed by the

host while the nodes are iterating.)

The number of computational cells increased from 112,937 in the initial

grid to 382,089 in the final grid. The full octree grid including the parent

cells ranged from 172,593 to 473,457.

36

Figure 6.1: MTVI Pressure Coefficient Contours

o
¢-
O

O

o

O
O

0_

O.

" 6 T T
o a I

3?

Figure 6.2: MTVI Solution

.(I_ n

.o_ g

O _-

ff_,-
_ _

dO dO

d

II

x

t

, 9 9 9' " "

,cq

i

t-
o

,o _ ;.
II

,cq _.... 1_" "O'"

•f." ,f, 9 9"

-" i {D

C
Cq "-

o_

i
= L(D

x_

o
d

do do

_6
II

x

o

p0
O

tl

x

_4

e?,

dO do

/

\
3

8

o

38

Figure6.3:MTVI Geometry

"6
E
0

c0

>

E

E

X

O

>
._o
E

O

E

F-

"O
O

o

II

x

_6
g

O

II

x

P,

/\ o
t q

o

o o o, 9

c_

_D

II

x

4.:

_; 'eu!pm_M

/\
o o o (?

l;'eu!iJeleM

\
0 0 0 0

11'eU!lJelRM

0

0 kn
_. O.
0 co

o

O
.O

,2

O

d

o

O

9

o

O

O

O
-o

o

_5

m

/\
cS o o o ?

¢o

II

x

¢-
o

O0

O

r-

=o

o

II

x

;/

O_

o

_I 'eu!iJe]eM

,/\
o o o

lJ 'eu!IJelRM

,,,.,'
o. _.

o o o

_.|'OU!IJOIRM

o

o

o

c_ s

0
(M.
0

0

O.
o

0
q

0

0

d

o

0

0

0
q

_.o
9

o

0

c_

o

o
(:5

0

q

9

39

Figure 6.4: MTVI Convergence History

o if

-i-

g ..a
O w
O

W

3

rv

o

I

I

':!
,'ii

co

i.

= ,,-e
o

8

O

8

sJn0H

0

>

/
S

0 0

LUJONzq

b

;>
I,

)

8
¢,D

.8
O4

"O

O

L

8
cO

O

140

o
0
_0

!

,,_ ill, it

, _|
I

I
I I

I !

i ! ii
i = 8

!

SlleO P!J9 |0 JequJnN

0

4O

Lockheed Win_ C

This configuration was chosen because it is difficult to grid with the octree

gridding scheme. Although the geometry of a simple airfoil seems simple,

the sharp trailing edge on the wing requires a large number of Cartesian

grid cells to resolve. The trailing edge was slightly blunted in order to

obtain a grid with a more manageable number of grid cells. Easier gridding

may be accomplished with the prismatic version of SPLITFLOW currently

under development. However, only the Cartesian version has been paral-

lelized. The flight condition simulated in this validation case is a Mach

number of 0.85 and an angle of attack of 5 degrees. This case was run on

the IBM SP2 on 17 processors (1 host and 16 nodes). The stop-check feature

was deactivated for faster overall timings. The minmod flux limiter was

used for robustness, and smoothness in the solution.

Figure 6.5 shows the general shape of the wing and the grid at the 30%

span station. The pressure coefficient contours are illustrated on the sur-

face, and on the grid at the span station mentioned. Grid clustering is visi-

ble near the shock, leading edge, and trailing edge of the wing. This is

where flow gradients and/or geometry facet spacing require high grid cell

density for proper resolution. Figure 6.6 compares the final SPLITFLOW

solution with experimental data at several span stations. The largest error

occurs where the flow shocks down near the tip. This error is common for

Euler solutions over this geometry where a small secondary vortex is not

detected by inviscid computations (Ref. 16). The spike in the SPLITFLOW

solution at the trailing edge is due to the blunted geometry used in the

solution.

Figure 6.7 shows the convergence history. The CPU times of the nodes are

nearly identical to one another. The low CPU time of the host indicates that

it is not performing computationally intensive tasks while the nodes are

iterating. Rather, it is occupied with writing output files because the stop-

check feature is deactivated.

The number of computational grid cells grew from 219,359 to 434,062

through adaptive grid refinements every 50 iterations. The number of cells

in the full octree data structure grew from 252,505 to 504,337.

41

Figure 6.5: Wing C Pressure Coefficient Contours

0

0
o

G

"6

0

W
W

a.

o

°m

Ltt
°

42

Figure 6.6: Wing C Solution

O_
"5

0

o

I:L " _

C_ _
r

"0

¢-

0
_.1

i i

m _C
_C

i i

0

cr

d o

i oJ

' i,4
_' ! • .

0 o 0 o o o

ff._ o,' 9 o, o, d d d d o._

dO

¢

g ' g

e i.

___._
d ._ d d d d 6 d o o o _

dD

C
¢

p : -_

0 _ ._

do

O0 0

t d

O_ v ° o

do

(

J
L --

r

t

.o
d

o
d

o
d

o
d

do

o

43

Figure 6.7: Wing C Convergence History

o

"1-

_D
C

O

a) m
> _.
e- oo
O . m

¢--

7O

r-

O

E

8

x
W

L. j
I
I

!!Ill '

L .8

E

o

sJn0H

t

Y
I

S
_r _

o o o

WJON a7

J

O

=O

O

.8

8

8

8

.8

-o

O

• _b

8
_D

-8

.8

.8

.8
0,I

8

O

O

8

,,

!

I
,,

LfL,,!

8

ii0
I'll _
l-
II

8
I

I

I

Ti
O

SlleO PUO IoJeqwnN

.o

44

7.0 Conclusions

SPLITFLOW has been modified to run effectively in a distributed memory

environment. The domain decomposition procedure quickly divides the

global domain into pieces with the grid cells and boundary facets evenly

distributed. Thus, load balancing is achieved on the subdomain processors,

and is dynamically adjusted as the automatic grid refinement occurs. The

solver and post-processor scale well with the number of processors. Tim-

ing comparisons between parallel SPLITFLOW and non-parallel SPLIT-

FLOW (autotasked across several processors) on a shared memory

machine show parallel SPLITFLOW to clearly be the faster version.

Although parallelization on coarse grain machines shows the best scalabil-

ity, results on massively parallel machines showed them to be viable alter-

natives to the coarse grain shared memory machines.

A host/node philosophy was adopted to modify SPLITFLOW for parallel-

ization. The "host" code performs most of the input/output and grid gen-

eration tasks. The "node" code performs the solving and most of the post-

processing tasks. The host requires 40% of the memory of non-parallel

SPLITFLOW. The node has a memory requirement proportional to the frac-

tion of the domain contained by the node. Thus, the node processes are

load balanced for computational effort and memory requirements. Timings

of the solver show good parallelization over the processors. As the number

of nodes increases, the wall clock time is consumed primarily by grid

refinement (partially parallelized), and writing output files (unparallel-

ized).

The domain decomposition procedure sorts the active cells without chil-

dren according to the coordinate of the reference vertex of each cell. The

cells which contain boundary facets are distributed among the nodes such

that the number of boundary facets is nearly uniform. Interior cells are dis-

tributed such that the total number of cells (boundary + interior) on each

node is uniform. The initial sorting is performed to reduce the number of

interface cells, which are common to more than one subdomain. The

decomposition procedure evenly distributes the domain into any number

of subdomains.

Performance of parallel SPLITFLOW on the Cray C90 and SGI Power Chal-

45

lenge showed it to be significantly faster than its non-parallel autotasked

counterpart. This result indicates that current SPLITFLOW users at LMTAS

may expect a speed improvement by switching to parallel SPLITFLOW on

the hardware currently in use. Results on massively parallel machines

showed the SP2 to be faster, although it spent a large fraction of its time

writing output files (i.e., accessing the disk). The T3D produced timing

results which were slightly more scalable, but its processors are much

slower.

Euler solutions generated with parallel SPLITFLOW match those of non-

parallel SPLITFLOW. Results indicate that parallel SPLITFLOW is quite

capable of solving flow over complex geometries. The difficulties encoun-

tered have been generally due to memory limitations and the use of Carte-

sian cells, rather than the parallelization of the code. Enhancements are

underway to reduce these difficulties, and improve the parallelization of

more tasks in the code.

46

8.0 Acknowledgments

This effort was sponsored by NASA Ames Research Center under Contract

NAS2-14057. Alex Woo of NASA Ames Research Center is gratefully

acknowledged for his technical guidance and support throughout this con-

tract. Farhad Ghaffari of the Transonic/Supersonic Aerodynamics Branch

of NASA-Langley Research Center generously provided technical data on

the MTVI. Computer time on the IBM SP2 at the National Aerodynamic

Simulation facility was supplied by NASA Ames Research Center. Dedi-

cated time on the Cray C90 and T3D was provided by Cray Research.

47

9.0 References

[1] Underwood, M., Riggens, D., McMillan, B., Lu, E., Reeves, L., "The

Computation of Supersonic Combustor Flows Using Multi-Comput-

ers," AIAA-93-0060.

[2] Gropp, W.D., Smith, E.B., "Computational Fluid Dynamics On Parallel

Processors," AIAA-88-3793-CP

[3] Scherr, S.J., "Implementation of an Explicit Navier-Stokes Algorithm on

a Distributed Memory Parallel Computer," AIAA-93-0063.

[4] Karman, S.L., "SPLITFLOW: A 3D Unstructured Cartesian/Prismatic

Grid CFD Code for Complex Geometries," AIAA-95-0343.

[5] Henriksen, P., Keunings, R., "Parallel Computation of the Flow of Inte-

gral Viscoelastic Fluids on a Heterogeneous Network of Workstations,"

International Journal for Numerical Methods in Fluids, vol. 18, pp.

1167-1183, 1994.

[6] DeZeeuw, D., Powell, K.G., "An Adaptively-Refined Cartesian Mesh

Solver for the Euler Equations," AIAA-91-1542-CP.

[7] Melton, J.E., Enomoto, EY., Berger, M.J., "3D Automatic Cartesian Grid

Generation for Euler Flows," AIAA-93-3386-CP.

[8] Harten, A., "High-Resolution Schemes for Hyperbolic Conservation

Laws,", Journal of Computational Physics,. vol. 49, pp. 357-393, 1983.

[9] Hassman, D., "The Cray J916 Supercomputer System," http://

www.cray.com/PUBLIC/product-info/J90/J916.html

[10] Hassman, D., "The Cray C98 Supercomputer System," http://

www.cray.com/PUBLIC/product-info/C90/C98.html

[11] Long, L.N., Khan, M.M.S., Sharp, H.T., "A Massively Parallel Three-

Dimensional Euler/Navier-Stokes Methods," AIAA-89-1937-CP.

48

[12] "The POWER CHALLENGE Technical Report," http://

www.sgi.com/Products/hardware/Power/chap3.html

[13] Hassman, D., "The Cray T3D -- The Right Tool at the Right Time,"

http://www.cray.com/PUBLIC/product-info/mpp/

T3D_overview.html

[14] Beaumont, C., "Parallel Processors," http://www.nas.nasa.gov/

NAS / Genlnfo / parallel.html

[15] Finley, D.B., "Euler Technology Assessment Program for Preliminary Air-

craft Design Employing SPLITFLOW Code With Cartesian Unstruc-

tured Grid Method," NASA Contractor Report 4649, March 1995.

[16] Kinard, T.A., Schabowski, D.M., "An Assessment of Unstructured

Grid Technology for Timely CFD Analysis," NASA CR-3291, Surface

Modeling, Grid Generation, and Related Issues in Computational Fluid

Dynamic (CFD) Solutions, May 1995, pp. 385-400.

49

"!ii!ii!ii!!ili!!iiiiii!iiiiiiiiiiiiii!iiiii!iii!!iiiiiiiiiiii_iiii!!ili

iiiiiiiiiiiii!!iiiii_i!iiiiiiiiiii!iiiiiii!i_i_ili_iiii!iiii_

Author(s):
N eal D. Domel

Name:

Reviewers:
"I have carefully and thoroughly reviewed

this technical report. I have worked with the
author(s) to ensure clarity of presentation and

technical accuracy. I take personal responsi-

bility for the quality of this document."

Signed: ,., - -_
L./

Date:

-2-c)(

Branch Chief:

Approved: _@. : "_

NAS ReportNumber: /

N A _- qg- oo

50

